Hydrodynamical study of terahertz emission in magnetized graphene field-effect transistors

نویسندگان

چکیده

Several hydrodynamic descriptions of charge transport in graphene have been presented recent years. We discuss a general model governing the dynamics two-dimensional electron gas magnetized field-effect transistor slow drift regime. The Dyakonov–Shur instability is investigated, including effect weak magnetic fields (i.e., away from Landau levels). verify that occurrence gap on dispersion relation imposes limit Mach number electronic flow, as it does not allow unstable frequencies to be below ωc. Furthermore, we presence external field decreases growth rate instability, well saturation amplitude. numerical results our simulations and higher order dynamic mode decomposition support such reasoning.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphene field-effect transistors as room-temperature terahertz detectors.

The unique optoelectronic properties of graphene make it an ideal platform for a variety of photonic applications, including fast photodetectors, transparent electrodes in displays and photovoltaic modules, optical modulators, plasmonic devices, microcavities, and ultra-fast lasers. Owing to its high carrier mobility, gapless spectrum and frequency-independent absorption, graphene is a very pro...

متن کامل

Energy dissipation in graphene field-effect transistors.

We measure the temperature distribution in a biased single-layer graphene transistor using Raman scattering microscopy of the 2D-phonon band. Peak operating temperatures of 1050 K are reached in the middle of the graphene sheet at 210 kW cm(-2) of dissipated electric power. The metallic contacts act as heat sinks, but not in a dominant fashion. To explain the observed temperature profile and he...

متن کامل

Hysteresis modeling in graphene field effect transistors

Graphene field effect transistors with an Al2O3 gate dielectric are fabricated on H-intercalated bilayer graphene grown on semi-insulating 4H-SiC by chemical vapour deposition. DC measurements of the gate voltage vg versus the drain current id reveal a severe hysteresis of clockwise orientation. A capacitive model is used to derive the relationship between the applied gate voltage and the Fermi...

متن کامل

A computational study of ballistic graphene nanoribbon field effect transistors

A self-consistent solution of Schrödinger equation based on Green’s function formalism coupled to a two-dimensional Poisson’s equation for treating the electrostatics of the device is used to simulate and model the ballistic performance of an armchair edged GNRFET. Our results take into account interactions of third nearest neighbors, as well as relaxation of carbon–carbon bonds in the edges of...

متن کامل

Theoretical study of graphene nanoribbon field-effect transistors

Carbon nanoribbons (CNRs) have been recently experimentally and theoretically investigated for different device applications due to their unique electronic properties. In this work, we present a theoretical study of the electronic structure, e.g. bandgap and density of states, of armchair carbon nanoribbons, using both, simple analytical solutions and numerical solutions based on a πorbital tig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Physics Letters

سال: 2021

ISSN: ['1520-8842', '0003-6951', '1077-3118']

DOI: https://doi.org/10.1063/5.0045444